
Meson Protocol
Security Assessment

October 3, 2022

Prepared for:

Phil Li and Edrick Yuhui Guan

Meson

Prepared by: Alexander Remie, Tjaden Hess, and Damilola Edwards

Rectangle

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Meson Protocol Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Meson
under the terms of the project statement of work and has been made public at Meson’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Meson Protocol Security Assessment
PUBLIC

Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 5

Summary of Recommendations 8

Project Summary 9

Project Goals 10

Project Targets 11

Project Coverage 12

Automated Testing 14

Codebase Maturity Evaluation 16

Summary of Findings 18

Detailed Findings 20

1. Hash collisions in untyped signatures 20

2. Typed signatures implement insecure nonstandard encodings 22

3. Missing validation in the _addSupportToken function 24

4. Insufficient event generation 25

5. Use of an uninitialized state variable in functions 26

6. Risk of upgrade issues due to missing __gap variable 27

7. Lack of a zero-value check on the initialize function 28

8. Solidity compiler optimizations can be problematic 29

9. Service fees cannot be withdrawn 30

Trail of Bits 3 Meson Protocol Security Assessment
PUBLIC

10. Lack of contract existence check on transfer / transferFrom calls 32

11. USDT transfers to third-party contracts will fail 34

12. SDK function _randomHex returns low-quality randomness 36

13. encodedSwap values are used as primary swap identifier 38

14. Unnecessary _releasing mutex increases gas costs 39

15. Misleading result returned by view function getPostedSwap 41

A. Vulnerability Categories 43

B. Code Maturity Categories 45

C. Code Quality Findings 47

D. Upgradeability Recommendations 49

E. Incident Response Plan Recommendations 52

F. Echidna Integration 54

G. Security Best Practices for the Use of a Multisignature Wallet 61

Trail of Bits 4 Meson Protocol Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Meson engaged Trail of Bits to review the security of its Meson protocol. From August 22 to
September 9, 2022, a team of three consultants conducted a security review of the
client-provided source code, with six person-weeks of effort. Details of the project’s
timeline, test targets, and coverage are provided in subsequent sections of this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the system, including access to the source code and
documentation. We performed static and dynamic testing of the target system and its
codebase, using both automated and manual processes.

Summary of Findings
The audit uncovered significant flaws that could impact system confidentiality, integrity, or
availability. A summary of the findings and details on notable findings are provided below.

EXPOSURE ANALYSIS

Severity Count

High 4

Medium 2

Low 1

Informational 7

Undetermined 1

CATEGORY BREAKDOWN

Category Count

Auditing and Logging 1

Configuration 1

Cryptography 3

Data Validation 3

Denial of Service 2

Testing 1

Undefined Behavior 4

Trail of Bits 5 Meson Protocol Security Assessment
PUBLIC

Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

● TOB-MES-1
A hash collision between a “request” message and a “release” message could enable
an attacker to steal other users’ funds.

● TOB-MES-6
The Meson protocol contracts lack a __gap variable. Thus, during an upgrade, new
variables cannot be added to any contract but the root contract
(UpgradableMeson).

● TOB-MES-10
The MesonHelpers contract executes a low-level call when transferring ERC20
tokens but does not check whether there is a contract at the target address. As a
result, a swap can succeed even if its initiator has not deposited any tokens.

● TOB-MES-11
The Meson protocol uses the nonstandard increaseAllowance method during the
release phase of a swap. However, certain ERC20 tokens (e.g., USDT) do not support
this method, which means that those tokens cannot be released during a swap.

Trail of Bits 6 Meson Protocol Security Assessment
PUBLIC

Summary of Recommendations

The Meson protocol is a work in progress with multiple planned iterations. Trail of Bits
recommends that Meson address the findings detailed in this report and take the following
additional steps prior to deployment:

● Consider creating an incident response plan to supplement the “Security
Precautions” section of the documentation. See appendix E for recommendations
on creating an incident response plan.

● Consider using an upgradeability pattern that does not involve use of the
delegatecall proxy pattern; see appendix D for related recommendations.

● Implement automated testing of forked versions of all supported ERC20 token
contracts. Ensure that the tests are run against the contract versions that are
actually present on the supported networks; do not assume that token contract
implementations on testnets will match the mainnet versions.

● Write unit tests for the addAuthorizedAddr and removeAuthorizedAddr
functions. They currently have no unit tests.

● Integrate the Echidna fuzz test provided in appendix F into the continuous
integration pipeline of the Meson protocol repository. This will help prevent future
updates from causing any of the bit-shifting operations to return incorrect results.

● Consider performing a separate audit of the off-chain relayer, liquidity provider (LP)
client, and JavaScript software development kit (SDK) to uncover any bugs that could
impact the overall security of the system.

Trail of Bits 7 Meson Protocol Security Assessment
PUBLIC

https://docs.meson.fi/protocol/security
https://docs.meson.fi/protocol/security

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Mary O’Brien, Project Manager
dan@trailofbits.com mary.o'brien@trailofbits.com

The following engineers were associated with this project:

Alexander Remie, Consultant Tjaden Hess, Consultant
alexander.remie@trailofbits.com tjaden.hess@trailofbits.com

Damilola Edwards, Consultant
damilola.edwards@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

August 17, 2022 Pre-project kickoff call

August 29, 2022 Status update meeting #1

September 6, 2022 Status update meeting #2

September 9, 2022 Delivery of report draft; report readout meeting

October 3, 2022 Delivery of final report

Trail of Bits 8 Meson Protocol Security Assessment
PUBLIC

mailto:dan@trailofbits.com
mailto:brien@trailofbits.com
mailto:alexander.remie@trailofbits.com
mailto:tjaden.hess@trailofbits.com
mailto:damilola.edwards@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of the Meson protocol.
Specifically, we sought to answer the following non-exhaustive list of questions:

● Are there any flaws in the deployment mechanism?

● Are there any flaws in the contracts that could prevent upgrades?

● Is support for the EVM-based chains implemented correctly?

● Do all important actions trigger events?

● Are all function inputs validated?

● Could invalid data be included in a contract’s storage?

● Are any of the functions susceptible to front-running?

● Is the system vulnerable to reentrancy attacks?

● Could there be hash collisions between the different hashing schemas?

● Are all of the bit-shifting operations implemented correctly?

● Could the use of low-level calls cause any problems?

● Are there any timing issues in the system?

● Is cross-chain bridging implemented correctly?

● Are any of the chains susceptible to congestion?

● Are there any ways to create a denial of service in the system?

● Could a user’s funds become stuck in the system?

● Can LPs steal users’ funds?

Trail of Bits 9 Meson Protocol Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the following target.

Meson Protocol

Repository https://github.com/MesonFi/meson-contracts-solidity

Versions d89ccc23d3c28d12d7110578d08903864b75b434,
e26107628136fe2be3675a28a3fe12cae618fa64

Type Solidity

Platform Ethereum

Trail of Bits 10 Meson Protocol Security Assessment
PUBLIC

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches and their results include the following:

UpgradableMeson. UpgradableMeson, the main contract in the system, inherits from all
of the other contracts and uses the OpenZeppelin Universal Upgradeable Proxy Standard
pattern. We reviewed the contract’s initialization and its upgradeability mechanism.

Meson. This contract is simply a non-upgradeable version of the UpgradableMeson
contract.

MesonSwap. This contract contains the functionality for initiating a swap request on the
source chain. We checked the contract for mishandled or overlooked edge cases,
front-running and reentrancy risks, and ways in which an LP or user could steal another
user’s funds or lose access to his or her own funds.

MesonPools. This contract manages pools of LP tokens and finalizes swaps on the
destination chain. We reviewed the contract for mishandled or overlooked edge cases,
front-running and reentrancy risks, and ways in which an LP or user could steal another
user’s funds or lose access to his or her own funds.

MesonHelpers. This contract contains helper functions for transferring ERC20 tokens,
functions that verify initiator signatures on swaps, and all of the functions required to
encode / decode swap data into / from uint256 values. We manually reviewed the transfer
functions, checked the signature-validation functions for collision risks, and used Echidna
to perform manual and dynamic testing of all of the bit-shifting operations.

MesonStates. This contract is inherited by the MesonPools and MesonSwap contracts and
contains the storage variables that keep track of pool information. We manually reviewed
the contract to identify any cases in which it could return an incorrect pool token balance.

MesonTokens. This contract stores all of the supported ERC20 tokens. We performed a
manual review of the contract, looking for ways to register the same supported token
multiple times and for any missing input validation.

UCTUpgradeable. The protocol uses this upgradeable ERC20 token contract to provide
payouts during promotional events. We manually reviewed the contract’s functionality and
used slither-check-erc to check its conformance to the ERC20 standard.

Trail of Bits 11 Meson Protocol Security Assessment
PUBLIC

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. During this project, we were unable to perform comprehensive testing of the
following system elements, which may warrant further review:

● The Meson protocol JavaScript SDK

● Off-chain components located in other repositories, such as the Meson relayer, the
LP client, and the web front end

Trail of Bits 12 Meson Protocol Security Assessment
PUBLIC

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tool in the automated testing phase of this project:

Tool Description Policy

Echidna A smart contract fuzzer that can rapidly test security
properties via malicious, coverage-guided test case
generation

Appendix D

Test Results
The results of this focused testing are detailed below.

MesonHelpers.sol. This contract contains the functions that perform bit shifts to encode
/ decode values into / from uint256 values.

Property Tool Result

The _amountFrom function always returns the encoded
amount value.

Echidna Passed

The _saltFrom function always returns the encoded salt
value.

Echidna Passed

The _feeForLp function always returns the encoded fee
value.

Echidna Passed

The _expireTsFrom function always returns the encoded
expireTs value.

Echidna Passed

Trail of Bits 13 Meson Protocol Security Assessment
PUBLIC

https://github.com/trailofbits/echidna
https://docs.google.com/document/d/1ccWygXKGuLnS_7TePKzgiEJQDMb5g1hDqPSHxv6tCFs/edit#heading=h.1qedipm2cr61

The _outChainFrom function always returns the encoded
outChain value.

Echidna Passed

The _outTokenIndexFrom function always returns the
encoded outToken value.

Echidna Passed

The _inChainFrom function always returns the encoded
inChain value.

Echidna Passed

The _inTokenIndexFrom function always returns the
encoded inToken value.

Echidna Passed

The _untilFromLocked function always returns the encoded
until value.

Echidna Passed

The _poolIndexFromLocked function always returns the
encoded poolIndex value.

Echidna Passed

The _tokenIndexFrom function always returns the encoded
tokenIndex value.

Echidna Passed

The _poolIndexFrom function always returns the encoded
poolIndex value.

Echidna Passed

The _initiatorFromPosted function always returns the
encoded initiator value.

Echidna Passed

The _poolIndexfromPosted function always returns the
encoded poolIndex value.

Echidna Passed

The _poolTokenIndexForOutToken function always returns
the encoded outToken value.

Echidna Passed

Trail of Bits 14 Meson Protocol Security Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The system uses Solidity v0.8.0 arithmetic, which
automatically prevents integer overflows, and contains
little arithmetic beyond a handful of addition and
subtraction operations.

Satisfactory

Auditing We identified multiple critical operations that do not
trigger events (TOB-MES-4). The system also lacks a
blockchain-monitoring mechanism for tracking important
system events.

Moderate

Authentication /
Access Controls

We did not identify any access control issues, and the
Meson protocol documentation clearly describes the
different actors in the system.

Satisfactory

Complexity
Management

Each of the system’s functions performs a single task and
is well documented in NatSpec and inline comments.

Satisfactory

Cryptography
and Key
Management

We identified a couple of cases in which message
signatures could collide (TOB-MES-1, TOB-MES-2) and
found that the values used to generate salts are
insufficiently random (TOB-MES-12).

Moderate

Decentralization The smart contracts are decentralized by design; the sole
privileged role is the premium manager, which lacks the
ability to steal or lock user funds. Moreover, the Meson
team indicated that the UpgradableMeson contract is
controlled by a multisignature wallet. However, since the

Satisfactory

Trail of Bits 15 Meson Protocol Security Assessment
PUBLIC

UpgradableMeson contract can be upgraded by the
Meson team (or by an attacker with access to the proxy
admin account), the implementation of the other
contracts could completely change at any time. Lastly,
the off-chain relayer, used to relay swap requests, is
currently centralized and controlled by Meson; the team
should consider decentralizing the component in the
future.

Documentation The official Meson protocol documentation is extensive
and correctly describes the implementation. The
implementation contains NatSpec and inline comments.

Satisfactory

Front-Running
Resistance

The MesonSwap contract is vulnerable to front-running,
which could prevent users from successfully submitting
swaps (TOB-MES-13). However, because the service
supports only 1-to-1 stablecoin swaps, front-running may
not be profitable.

Moderate

Low-Level
Manipulation

Three code paths use assembly, which is error-prone.
Additionally, when transferring ERC20 tokens, the
MesonHelpers contract executes low-level calls without
performing contract existence checks (TOB-MES-10).

Moderate

Testing and
Verification

The tests provided by the Meson team are appropriate,
achieve sufficient coverage, and appear to cover various
edge cases. However, the tests are run in a local
environment, with a mock ERC20 token contract standing
in for the supported stablecoin contracts. As a result, the
test environment behavior may differ significantly from
the on-chain behavior (TOB-MES-11). Additionally, there
is no unit testing of the addAuthorizedAddr or
removeAuthorizedAddr function.

Lastly, the Meson team should consider writing
additional Echidna properties for the swapping logic.

Moderate

Trail of Bits 16 Meson Protocol Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Hash collisions in untyped signatures Cryptography High

2 Typed signatures implement insecure
nonstandard encodings

Cryptography Informational

3 Missing validation in the _addSupportToken
function

Data Validation Informational

4 Insufficient event generation Auditing and
Logging

Informational

5 Use of an uninitialized state variable in functions Configuration Medium

6 Risk of upgrade issues due to missing __gap
variable

Undefined
Behavior

High

7 Lack of a zero-value check on the initialize
function

Data Validation Informational

8 Solidity compiler optimizations can be
problematic

Undefined
Behavior

Undetermined

9 Service fees cannot be withdrawn Undefined
Behavior

Informational

10 Lack of contract existence check on transfer /
transferFrom calls

Data Validation High

11 USDT transfers to third-party contracts will fail Testing High

12 SDK function _randomHex returns low-quality
randomness

Cryptography Informational

Trail of Bits 17 Meson Protocol Security Assessment
PUBLIC

13 encodedSwap values are used as primary swap
identifier

Denial of Service Medium

14 Unnecessary _releasing mutex increases gas costs Denial of Service Informational

15 Misleading result returned by view function
getPostedSwap

Undefined
Behavior

Low

Trail of Bits 18 Meson Protocol Security Assessment
PUBLIC

Detailed Findings

1. Hash collisions in untyped signatures

Severity: High Difficulty: High

Type: Cryptography Finding ID: TOB-MES-1

Target: contracts/utils/MesonHelpers.sol

Description
To post or execute a swap, a user must provide an ECDSA signature on a message
containing the encoded swap information. The Meson protocol supports both typed
(EIP-712) and legacy untyped (EIP-191) messages. The format of a message is determined
by a bit in the encoded swap information itself. The Meson protocol defines two message
types, a “request message” containing only an encoded swap and a “release message”
containing the hash of an encoded swap concatenated with the recipient’s address.

Figure 1.1 shows the relevant signature-verification code.

213 function _checkRequestSignature(
...
237 if (nonTyped) {
238 bytes32 digest = keccak256(abi.encodePacked(
239 bytes28(0x19457468657265756d205369676e6564204d6573736167653a0a3332), //
HEX of "\x19Ethereum Signed Message:\n32"
240 encodedSwap
241));
242 require(signer == ecrecover(digest, v, r, s), "Invalid signature");
243 return;
244 }
...
266 function _checkReleaseSignature(
...
293 if (nonTyped) {
294 digest = keccak256(abi.encodePacked(
295 bytes28(0x19457468657265756d205369676e6564204d6573736167653a0a3332), //
HEX of "\x19Ethereum Signed Message:\n32"
296 keccak256(abi.encodePacked(encodedSwap, recipient))
297));
...

Figure 1.1: contracts/utils/MesonHelpers.sol

Trail of Bits 19 Meson Protocol Security Assessment
PUBLIC

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-191
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/utils/MesonHelpers.sol

Note that the form of both the request and release messages in the figure is
"\x19Ethereum Signed Message:\n32" + msg, where msg is a 32-byte string. If an
attacker could find a message that would be interpreted as valid in both contexts, the
attacker could use the signature on that message to both request and release funds,
facilitating a number of potential attacks.

Specifically, the attacker would need to identify swap1, swap2, and recipient values such
that swap1 = keccak256(swap2, recipient).

The attacker could do that by choosing a valid swap2 value and then iterating through
recipient values until finding one for which keccak256(swap2, recipient) would be
interpreted as a valid message. With the current restrictions on the swap amount, chain,
and token fields, we estimate that this would take between 260 and 270 tries.

Exploit Scenario
Alice computes swap1, swap2, and recipient values such that swap1 =
keccak256(swap2, recipient) and swap1 and swap2 refer to valid swaps from chain A
to chain B.

Alice then convinces Bob to post swap1 and swap2 on chain A, locks swap2 on chain B, and
uses the request signature on swap1 as the release signature on swap2. This enables her
to release the funds to her wallet (the recipient address) and to collect the funds on both
sides of the swap.

Recommendations
Short term, prefix untyped messages with the message type (request or release), and
include all message fields in the top-level digest, as shown in figure 1.2:

bytes32 digest = keccak256(abi.encodePacked(
bytes28(“\x19Ethereum Signed Message:\n71”),
bytes7(“REQUEST”),
encodedSwap,
recipient

));

Figure 1.2: The recommended modifications to the top-level digest

Long term, document the formats of all messages that could possibly be validated by the
MesonHelpers contract, and ensure that the message type and all parameters can be
unambiguously extracted from the top-level digest for verification. This will help ensure
that the message encoding is injective. Additionally, consider implementing legacy
signatures by using EIP-712-compliant messages as the input to eth_sign.

Trail of Bits 20 Meson Protocol Security Assessment
PUBLIC

2. Typed signatures implement insecure nonstandard encodings

Severity: Informational Difficulty: High

Type: Cryptography Finding ID: TOB-MES-2

Target: contracts/utils/MesonHelpers.sol

Description
EIP-712 specifies standard encodings for the hashing and signing of typed structured data.
The goal of typed structured signing standards is twofold: ensuring a unique injective
encoding for structured data in order to prevent collisions (like that detailed in TOB-MES-1)
and allowing wallets to display complex structured messages unambiguously in
human-readable form.

The images in figure 2.1 demonstrate the difference between a complex untyped
unstructured message (left) and its EIP-712 equivalent (right), both in MetaMask:

Figure 2.1: A reproduction of images from the EIP-712 standard

Meson currently uses a form of typed message encoding that does not conform to EIP-712.
Specifically, the encoding is not EIP-191 compliant and thus could theoretically collide with
the encoding of personal messages (Ethereum signed messages) or Recursive Length Prefix
(RLP)-encoded transactions.

Trail of Bits 21 Meson Protocol Security Assessment
PUBLIC

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712#motivation
https://eips.ethereum.org/EIPS/eip-191

The digest format for swap requests is included in figure 2.2, in which
REQUEST_TYPE_HASH corresponds to keccak256("bytes32 Sign to request a swap
on Meson (Testnet)").

246 bytes32 typehash = REQUEST_TYPE_HASH;
247 bytes32 digest;
248 assembly {
249 mstore(0, encodedSwap)
250 mstore(32, keccak256(0, 32))
251 mstore(0, typehash)
252 digest := keccak256(0, 64)
253 }

Figure 2.2: contracts/utils/MesonHelpers.sol#246–253

While the message types currently used in the protocol do not appear to have any
dangerous interactions with each other, message types added to future versions of the
protocol could theoretically introduce such issues.

Exploit Scenario
The Meson team adds a new message type, the typehash of which collides with
EIP-191-defined message types (e.g., begins with “\x19\x45”) or with RLP-encoded data
(e.g., Ethereum transactions). As a result, signatures can be replayed in unintended
contexts.

Recommendations
Short term, include an EIP-191 prefix in the message encoding to distinguish the encoding
from that used with other message types. For example, beginning all messages with
“\x19\xff” would differentiate messages that do not adhere to EIP-712 from other EIP-191
messages.

Long term, ensure that all messages are formatted, hashed, and signed in compliance with
EIP-712.

Trail of Bits 22 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/utils/MesonHelpers.sol#L246-L253

3. Missing validation in the _addSupportToken function

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-MES-3

Target: contracts/utils/MesonTokens.sol

Description
Insufficient input validation in the _addSupportToken function makes it possible to
register the same token as supported multiple times. This does not cause a problem,
because if there are duplicate entries for a token in the token list, the last one added will be
the one that is used. However, it does mean that multiple indexes could point to the same
token, while the token would point to only one of those indexes.

47 function _addSupportToken(address token, uint8 index) internal {
48 require(index != 0, "Cannot use 0 as token index");
49 _indexOfToken[token] = index;
50 _tokenList[index] = token;
51 }

Figure 3.1: contracts/utils/MesonTokens.sol

Recommendations
Short term, have _addSupportToken check that the token is not already registered in the
mapping (i.e., that its index is greater than zero).

Long term, implement validation of function inputs whenever possible.

Trail of Bits 23 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/utils/MesonTokens.sol#L47-L51

4. Insu�cient event generation

Severity: Informational Difficulty: Low

Type: Auditing and Logging Finding ID: TOB-MES-4

Target: contracts/Pools/MesonPools.sol

Description
Several critical operations in the MesonPools contract do not emit events. As a result, it will
be difficult to review the correct behavior of the contract once it has been deployed.

The following operations should trigger events:

● MesonPools.depositAndRegister

● MesonPools.deposit

● MesonPools.withdraw

● MesonPools.addAuthorizedAddr

● MesonPools.removeAuthorizedAddr

● MesonPools.unlock

Without events, users and blockchain-monitoring systems cannot easily detect suspicious
behavior and may therefore overlook attacks or malfunctioning contracts.

Exploit Scenario
An attacker discovers a vulnerability in the MesonPools contract and is able to modify its
execution. Because the attacker’s actions do not trigger any events, the behavior goes
unnoticed until it has caused damage such as financial losses.

Recommendations
Short term, add events for all operations to strengthen the monitoring and alert systems of
the protocol. Events aid in contract monitoring and the detection of suspicious behavior.

Long term, consider using a blockchain-monitoring system to track any suspicious behavior
in the contracts. The system relies on several contracts to behave as expected. A
monitoring mechanism for critical events would quickly detect any compromised system
components.

Trail of Bits 24 Meson Protocol Security Assessment
PUBLIC

5. Use of an uninitialized state variable in functions

Severity: Medium Difficulty: Low

Type: Configuration Finding ID: TOB-MES-5

Target: contracts/Token/UCTUpgradeable.sol

Description
The _mesonContract address is not set in the UCTUpgradeable contract’s initialize
function during the contract’s initialization. As a result, the value of _mesonContract
defaults to the zero address.

The UCTUpgradeable.allowance and UCTUpgradeable.transferFrom functions
perform checks that rely on the value of the _mesonContract state variable, which may
lead to unexpected behavior.

18 address private _mesonContract;
19
20 function initialize(address minter) public initializer {
21 __ERC20_init("USD Coupon Token (https://meson.fi)", "UCT");
22 _owner = _msgSender();
23 _minter = minter;
24 // _mesonContract = ;
25 }

Figure 5.1: contracts/Token/UCTUpgradeable.sol:18–25

54 function allowance(address owner, address spender) public view override
returns (uint256) {
55 if (spender == _mesonContract) {

Figure 5.2: contracts/Token/UCTUpgradeable.sol:54–55

65 if (msgSender == _mesonContract && ERC20Upgradeable.allowance(sender,
msgSender) < amount) {

Figure 5.3: contracts/Token/UCTUpgradeable.sol:65

Recommendations
Short term, set the _mesonContract address in the initialize function.

Long term, carefully review all state variables in the contracts and ensure that they are
explicitly set upon the creation of the contracts or during their construction / initialization.

Trail of Bits 25 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Token/UCTUpgradeable.sol#L18-L25
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Token/UCTUpgradeable.sol#L54-L55
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Token/UCTUpgradeable.sol#L65

6. Risk of upgrade issues due to missing __gap variable

Severity: High Difficulty: Medium

Type: Undefined Behavior Finding ID: TOB-MES-6

Target: contracts/**/*.sol

Description
None of the Meson protocol contracts include a __gap variable. Without this variable, it is
not possible to add any new variables to the inherited contracts without causing storage
slot issues. Specifically, if variables are added to an inherited contract, the storage slots of
all subsequent variables in the contract will shift by the number of variables added. Such a
shift would likely break the contract.

All upgradeable OpenZeppelin contracts contain a __gap variable, as shown in figure 6.1.

89 /**
90 * @dev This empty reserved space is put in place to allow future versions to
add new
91 * variables without shifting down storage in the inheritance chain.
92 * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
93 */
94 uint256[49] private __gap;

Figure 6.1: openzeppelin-contracts-upgradeable/OwnerUpgradeable.sol

Exploit Scenario
Alice, a developer of the Meson protocol, adds a new variable to the MesonStates contract
as part of an upgrade. As a result of the addition, the storage slot of each subsequent
variable changes, and the contract stops working.

Recommendations
Short term, add a __gap variable (specifically uint256 __gap[100]) to all stateful Meson
protocol contracts from which UpgradableMeson inherits.

Long term, consider redesigning the system such that the contracts can be upgraded
through a mechanism other than the proxy pattern.

Trail of Bits 26 Meson Protocol Security Assessment
PUBLIC

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/54803be62207c2412e27d09325243f2f1452f7b9/contracts/access/OwnableUpgradeable.sol#L89-L94

7. Lack of a zero-value check on the initialize function

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-MES-7

Target: contracts/Token/UCTUpgradeable.sol

Description
The UCTUpgradeable contract’s initialize function fails to validate the address of the
incoming minter argument. This means that the caller can accidentally set the minter
variable to the zero address.

20 function initialize(address minter) public initializer {
21 __ERC20_init("USD Coupon Token (https://meson.fi)", "UCT");
22 _owner = _msgSender();
23 _minter = minter;
24 // _mesonContract = ;
25 }

Figure 7.1: contracts/Token/UCTUpgradeable.sol:20–25

If the minter address is set to the zero address, the admin must immediately redeploy the
contract and set the address to the correct value; a failure to do so could result in
unexpected behavior.

Exploit Scenario
When deploying a new version of the UCTUpgradeable contract, Alice mistakenly passes in
the zero address for the minter argument. The misconfiguration causes the contract to
exhibit unexpected behavior.

Recommendations
Short term, add a zero-value check for the minter argument to ensure that users cannot
accidentally set an incorrect value, misconfiguring the system.

Long term, use the Slither static analyzer to catch common issues such as this one.
Consider integrating a Slither scan into the project’s continuous integration pipeline,
pre-commit hooks, or build scripts.

Trail of Bits 27 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Token/UCTUpgradeable.sol#L20-L25
https://github.com/crytic/slither

8. Solidity compiler optimizations can be problematic

Severity: Undetermined Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-MES-8

Target: Meson protocol

Description
The Meson protocol has enabled optional compiler optimizations in Solidity.

There have been several optimization bugs with security implications. Moreover,
optimizations are actively being developed. Solidity compiler optimizations are disabled by
default, and it is unclear how many contracts in the wild actually use them. Therefore, it is
unclear how well they are being tested and exercised.

High-severity security issues due to optimization bugs have occurred in the past. A
high-severity bug in the emscripten-generated solc-js compiler used by Truffle and
Remix persisted until late 2018. The fix for this bug was not reported in the Solidity
CHANGELOG. Another high-severity optimization bug resulting in incorrect bit shift results
was patched in Solidity 0.5.6. More recently, another bug due to the incorrect caching of
keccak256 was reported.

A compiler audit of Solidity from November 2018 concluded that the optional optimizations
may not be safe.

It is likely that there are latent bugs related to optimization and that new bugs will be
introduced due to future optimizations.

Exploit Scenario
A latent or future bug in Solidity compiler optimizations—or in the Emscripten transpilation
to solc-js—causes a security vulnerability in the Meson protocol contracts.

Recommendations
Short term, measure the gas savings from optimizations and carefully weigh them against
the possibility of an optimization-related bug.

Long term, monitor the development and adoption of Solidity compiler optimizations to
assess their maturity.

Trail of Bits 28 Meson Protocol Security Assessment
PUBLIC

https://github.com/ethereum/solidity/pull/11093
https://solidity.readthedocs.io/en/v0.7.0/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.csz7fns3yza3
https://github.com/ethereum/solidity/releases/tag/v0.5.6
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.soliditylang.org/2021/03/23/keccak-optimizer-bug/
https://blog.openzeppelin.com/solidity-compiler-audit-8cfc0316a420/
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn

9. Service fees cannot be withdrawn

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-MES-9

Target: contracts/Pools/MesonPools.sol

Description
If the service fee charged for a swap is waived, the fee collected for the swap is stored at
index zero of the _balanceOfPoolToken mapping. However, because the fee withdrawal
function does not allow withdrawals from index zero of the mapping, the fee can never be
withdrawn. Although this limitation may be purposeful, the code appears to indicate that it
is a mistake.

198 if (!feeWaived) { // If the swap should pay service fee (charged by Meson
protocol)
199 uint256 serviceFee = _serviceFee(encodedSwap);
200 // Subtract service fee from the release amount
201 releaseAmount -= serviceFee;
202 // The collected service fee will be stored in `_balanceOfPoolToken` with
`poolIndex = 0`
203 _balanceOfPoolToken[_poolTokenIndexForOutToken(encodedSwap, 0)] +=
serviceFee;

Figure 9.1: contracts/Pools/MesonPools.sol:198–203

70 function withdraw(uint256 amount, uint48 poolTokenIndex) external {
71 require(amount > 0, "Amount must be positive");
72
73 uint40 poolIndex = _poolIndexFrom(poolTokenIndex);
74 require(poolIndex != 0, "Cannot use 0 as pool index");

Figure 9.2: contracts/Pools/MesonPools.sol:70–74

Moreover, even if the function allowed the withdrawal of tokens stored at poolIndex 0, a
withdrawal would still not be possible. This is because the owner of poolIndex 0 is not set
during initialization, and it is not possible to register a pool with index 0.

13 function initialize(address[] memory supportedTokens) public {
14 require(!_initialized, "Contract instance has already been initialized");
15 _initialized = true;
16 _owner = _msgSender();
17 _premiumManager = _msgSender();

Trail of Bits 29 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Pools/MesonPools.sol#L198-L203
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Pools/MesonPools.sol#L70-L74

18
19 for (uint8 i = 0; i < supportedTokens.length; i++) {
20 _addSupportToken(supportedTokens[i], i + 1);
21 }
22 }

Figure 9.3: contracts/UpgradableMeson.sol:13–22

Recommendations
Short term, either allow fees stored at poolIndex 0 to be withdrawn, or add a comment to
the implementation explaining the reason that they cannot be withdrawn.

Long term, consider burning any fees that will not ever be withdrawn.

Trail of Bits 30 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/UpgradableMeson.sol#L13-L22

10. Lack of contract existence check on transfer / transferFrom calls

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-MES-10

Target: contracts/utils/MesonHelpers.sol

Description
The MesonHelpers contract uses the low-level call function to execute the transfer /
transferFrom function of an ERC20 token. However, it does not first perform a contract
existence check. Thus, if there is no contract at the token address, the low-level call will still
return success. This means that if a supported token is subsequently self-destructed
(which is unlikely to happen), it will be possible for a posted swap involving that token to
succeed without actually depositing any tokens.

53 function _unsafeDepositToken(
54 address token,
55 address sender,
56 uint256 amount,
57 bool isUCT
58) internal {
59 require(token != address(0), "Token not supported");
60 require(amount > 0, "Amount must be greater than zero");
61 (bool success, bytes memory data) = token.call(abi.encodeWithSelector(
62 bytes4(0x23b872dd), //
bytes4(keccak256(bytes("transferFrom(address,address,uint256)")))
63 sender,
64 address(this),
65 amount
66 // isUCT ? amount : amount * 1e12 // need to switch to this line if
deploying to BNB Chain or Conflux
67));
68 require(success && (data.length == 0 || abi.decode(data, (bool))),
"transferFrom failed");
69 }

Figure 10.1: contracts/util/MesonHelpers.sol:53–69

The Solidity documentation includes the following warning:

The low-level functions call, delegatecall and staticcall return true as their first
return value if the account called is non-existent, as part of the design of the
EVM. Account existence must be checked prior to calling if needed.

Trail of Bits 31 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/util/MesonHelpers.sol#L53-L69

Figure 10.2: A snippet of the Solidity documentation detailing unexpected behavior related to
call

Exploit Scenario
A token that is supported by the Meson protocol, token X, is self-destructed. However, the
Meson protocol does not immediately detect the change and still allows users to post
swaps with token X. Because the MesonHelpers contract lacks a contract existence check,
these swaps succeed.

Recommendations
Short term, implement a contract existence check before each low-level call, and / or check
the balance of the sender before and after each call to verify that the expected amount has
actually been transferred.

Long term, carefully review the Solidity documentation, especially the “Warnings” section.

Trail of Bits 32 Meson Protocol Security Assessment
PUBLIC

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

11. USDT transfers to third-party contracts will fail

Severity: High Difficulty: Low

Type: Testing Finding ID: TOB-MES-11

Target: contracts/utils/MesonHelpers.sol (PR #65)

Description
To allow a user to release funds to a smart contract, the Meson protocol increases the
contract’s allowance (via a call to increaseAllowance) and then calls the contract, as
shown in figure 11.1.

66 IERC20Minimal(token).increaseAllowance(contractAddr, adjustedAmount);
67 ITransferWithBeneficiary(contractAddr).transferWithBeneficiary(token,
adjustedAmount, beneficiary, data);

Figure 11.1: contracts/utils/MesonHelpers.sol#66–67

The increaseAllowance method, which is part of OpenZeppelin’s ERC20 library, was
introduced to prevent race conditions when token allowances are changed via top-level
calls. However, this method is not in the ERC20 specification, and not all tokens implement
it. In particular, USDT does not implement the method on the Ethereum mainnet. Thus, any
attempt to release USDT to a smart contract wallet during a swap will fail, trapping the
user’s funds.

Exploit Scenario
Bob, a Meson protocol user, creates a swap from USDC to USDT on the Ethereum mainnet,
using the third-party decentralized application (dApp) wallet feature. Bob then attempts to
release the funds. However, because USDT does not implement the increaseAllowance
function, the call fails, and Bob’s funds are trapped.

Recommendations
Short term, use standard ERC20 methods to perform allowance increases, as shown in
figure 11.2.

uint256 adjustedAmount = amount + IERC20Minimal(token).allowance(contractAddr);
IERC20Minimal(token).approve(contractAddr, adjustedAmount);
ITransferWithBeneficiary(contractAddr).transferWithBeneficiary(token,

adjustedAmount, beneficiary, data);

Figure 11.2: An example implementation of an allowance increase

Trail of Bits 33 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/utils/MesonHelpers.sol#L66-L67
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.m9fhqynw2xvt
https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM/edit#heading=h.m9fhqynw2xvt

An implementation such as this one is safe because the retrieval and incrementation of an
allowance happen atomically, preventing race conditions.

Long term, implement tests for all features, especially those used to deposit and withdraw
funds, create swaps, and release funds during swaps. Additionally, ensure that these tests
use exact copies of the on-chain token contracts and cover all combinations of supported
chains and tokens. For example, test against a fork of the Ethereum mainnet rather than
against a fresh network with a synthetic mock token.

Trail of Bits 34 Meson Protocol Security Assessment
PUBLIC

12. SDK function _randomHex returns low-quality randomness

Severity: Informational Difficulty: High

Type: Cryptography Finding ID: TOB-MES-12

Target: sdk/src/Swap.ts

Description
The Meson protocol software development kit (SDK) uses the _randomHex function to
generate random salts for new swaps. This function accepts a string length as input and
produces a random hexadecimal string of that length. To do that, _randomHex uses the
JavaScript Math.random function to generate a 32-bit integer and then encodes the integer
as a zero-padded hexadecimal string. The result is eight random hexadecimal characters,
padded with zeros to the desired length. However, the function is called with an argument
of 16, so half of the characters in the salt it produces will be zero.

95 private _makeFullSalt(salt?: string): string {
96 if (salt) {
97 if (!isHexString(salt) || salt.length > 22) {
98 throw new Error('The given salt is invalid')
99 }
100 return `${salt}${this._randomHex(22 - salt.length)}`
101 }
102
103 return `0x0000${this._randomHex(16)}`
104 }
105
106 private _randomHex(strLength: number) {
107 if (strLength === 0) {
108 return ''
109 }
110 const max = 2 ** Math.min((strLength * 4), 32)
111 const rnd = BigNumber.from(Math.floor(Math.random() * max))
112 return hexZeroPad(rnd.toHexString(), strLength / 2).replace('0x', '')
113 }

Figure 12.1: packages/sdk/src/Swap.ts#95–113

Furthermore, the Math.random function is not suitable for uses in which the output of the
random number generator should be unpredictable. While the protocol’s current use of the
function does not pose a security risk, future implementers and library users may assume
that the function produces the requested amount of high-quality entropy.

Trail of Bits 35 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/0f25c0afa81124732d0d45db29c07c908592a566/packages/sdk/src/Swap.ts#L95-L113

Exploit Scenario
The SDK is updated such that it uses the _randomHex function to generate cryptographic
secrets. An attacker can then easily brute-force the keys generated by that function.

Recommendations
Short term, add a comment documenting the fact that _randomHex is not suitable for use
in security-critical applications.

Long term, modify _randomHex to use a cryptographically secure pseudorandom number
generator that outputs random data of the desired length (e.g.,
ethers.utils.randomBytes).

Trail of Bits 36 Meson Protocol Security Assessment
PUBLIC

https://docs.ethers.io/v5/api/utils/bytes/#utils-randomBytes

13. encodedSwap values are used as the primary swap identifier

Severity: Medium Difficulty: Medium

Type: Denial of Service Finding ID: TOB-MES-13

Target: contracts/Swap/MesonSwap.sol

Description
The primary identifier of swaps in the MesonSwap contract is the encodedSwap structure.
This structure does not contain the address of a swap’s initiator, which is recorded, along
with the poolIndex of the bonded liquidity provider (LP), as the postingValue. If a
malicious actor or maximal extractable value (MEV) bot were able to front-run a user’s
transaction and post an identical encodedSwap, the original initiator’s transaction would
fail, and the initiator’s swap would not be posted.

48 function postSwap(uint256 encodedSwap, bytes32 r, bytes32 s, uint8 v, uint200
postingValue)
49 external forInitialChain(encodedSwap)
50 {
51 require(_postedSwaps[encodedSwap] == 0, "Swap already exists");

...

Figure 13.1: contracts/Swap/MesonSwap.sol#48–52

Because the Meson protocol supports only 1-to-1 stablecoin swaps, transaction
front-running is unlikely to be profitable. However, a bad actor could dramatically affect a
specific user’s ability to transact within the system.

Exploit Scenario
A malicious actor wishes to censor a particular user. To do that, he submits a transaction
with the encodedSwap value of the user’s swap (having seen it in the mempool) ahead of
the user’s transaction. This prevents the user from posting the swap.

Recommendations
Short term, monitor the live MesonSwap contract for any transaction failures caused by
encodedSwap duplication.

Long term, consider using swapId as the primary identifier of swaps in the MesonSwap
contract, as is done in MesonPools.

Trail of Bits 37 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Swap/MesonSwap.sol#L48-L52

14. Unnecessary _releasing mutex increases gas costs

Severity: Informational Difficulty: Low

Type: Denial of Service Finding ID: TOB-MES-14

Target: contracts/Pools/MesonPools.sol (PR #65)

Description
When executing a swap in the third-party dApp integration release mode, the Meson
protocol makes a call to an untrusted user-specified smart contract. To prevent reentrancy
attacks, a flag is set before and cleared after the untrusted contract call.

181 require(!_releasing, "Another release is running");
...
219 _releasing = true;
220 _transferToContract(_tokenList[tokenIndex], recipient, initiator, amount,
tokenIndex == 255, _saltDataFrom(encodedSwap));
221 _releasing = false;

Figure 14.1: contracts/Pools/MesonPools.sol#181–221

This flag is not strictly necessary, as by the time the contract reaches the untrusted call, it
has already cleared the _lockSwaps entry corresponding to the release, preventing
duplicate releases via reentrancy.

191 uint80 lockedSwap = _lockedSwaps[swapId];
192 require(lockedSwap != 0, "Swap does not exist");
...
196 _checkReleaseSignature(encodedSwap, recipient, r, s, v, initiator);
197 _lockedSwaps[swapId] = 0;
...
211 _release(encodedSwap, tokenIndex, initiator, recipient, releaseAmount);

Figure 14.2: contracts/Pools/MesonPools.sol#191–197

Exploit Scenario
Users taking advantage of third-party DApp integrations pay higher gas costs when
executing swaps because of the unnecessary write operation.

Recommendations
Short term, remove the _releasing flag and guard logic.

Trail of Bits 38 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/7f2ee8cbe3ade7aab1309cfd9fd2d60f5ee60993/contracts/Pools/MesonPools.sol#L219-L221
https://github.com/MesonFi/meson-contracts-solidity/blob/7f2ee8cbe3ade7aab1309cfd9fd2d60f5ee60993/contracts/Pools/MesonPools.sol#L191-L197

Long term, ensure that calls to untrusted contracts occur only after all state modifications
are complete. Consider moving the _release call so that it occurs after the SwapReleased
event has been emitted; this will ensure consistency in the order of events.

Trail of Bits 39 Meson Protocol Security Assessment
PUBLIC

15. Misleading result returned by view function getPostedSwap

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-MES-15

Target: contracts/Swap/MesonSwap.sol

Description
The value returned by the getPostedSwap function to indicate whether a swap has been
executed can be misleading. Once a swap has been executed, the value of the swap is reset
to either 0 or 1. However, the getPostedSwap function returns a result indicating that a
swap has been executed only if the swap’s value is 1.

141 if (_expireTsFrom(encodedSwap) < block.timestamp + MIN_BOND_TIME_PERIOD) {
142 // The swap cannot be posted again and therefore safe to remove it.
143 // LPs who execute in this mode can save ~5000 gas.
144 _postedSwaps[encodedSwap] = 0;
145 } else {
146 // The same swap information can be posted again, so set `_postedSwaps`
value to 1 to prevent that.
147 _postedSwaps[encodedSwap] = 1;
148 }

Figure 15.1: contracts/Swap/MesonSwap.sol:140–148

161 /// @notice Read information for a posted swap
162 function getPostedSwap(uint256 encodedSwap) external view
163 returns (address initiator, address poolOwner, bool executed)
164 {
165 uint200 postedSwap = _postedSwaps[encodedSwap];
166 initiator = _initiatorFromPosted(postedSwap);
167 executed = postedSwap == 1;
168 if (initiator == address(0)) {
169 poolOwner = address(0);
170 } else {
171 poolOwner = ownerOfPool[_poolIndexFromPosted(postedSwap)];
172 }
173 }

Figure 15.2: contracts/Swap/MesonSwap.sol:162–173

Front-end services (or any other service interacting with this function) may be misled by the
return value, reacting as though a swap has not been executed when it actually has.

Trail of Bits 40 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Swap/MesonSwap.sol#L140-L148
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Swap/MesonSwap.sol#L161-L173

Recommendations
Short term, redesign the way that the getPostedSwap function identifies executed swaps
so that it returns a correct result in all cases, rename its return value, or document the
edge case.

Long term, when designing view functions that will be used by other applications, ensure
that the names of their return values accurately reflect what the values are meant to
convey, and document any edge cases or discrepancies in a NatSpec comment. This will
help prevent those applications from misinterpreting a contract state.

Trail of Bits 41 Meson Protocol Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 42 Meson Protocol Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 43 Meson Protocol Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Front-Running
Resistance

The system’s resistance to front-running attacks

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Trail of Bits 44 Meson Protocol Security Assessment
PUBLIC

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 45 Meson Protocol Security Assessment
PUBLIC

C. Code Quality Findings

This appendix lists findings that are not associated with specific vulnerabilities.

● Hard-coded hexadecimal values. Several constants in the Meson codebase are
represented as hard-coded hexadecimal values. Using these values rather than
ASCII-encoded values and compile time–computed hashes reduces readability and
increases the chance of typos.

? bytes25(0x1954524f4e205369676e6564204d6573736167653a0a33330a) // HEX of
"\x19TRON Signed Message:\n33\n"

: bytes25(0x1954524f4e205369676e6564204d6573736167653a0a33320a), // HEX of
"\x19TRON Signed Message:\n32\n"

Figure C.1: contracts/utils/MesonHelpers.sol#229–230

? bytes25("\x19TRON Signed Message:\n33\n")
: bytes25(“\x19TRON Signed Message:\n32\n"),

Figure C.2: The code in figure C.1, with ASCII literals instead of hard-coded hexadecimals

mstore(0, 0xf6ea10de668a877958d46ed7d53eaf47124fda9bee9423390a28c203556a2e55) //
mainnet

Figure C.3: contracts/utils/MesonHelpers.sol#304

bytes32 constant MAINNET_TYPEHASH = keccak256(abi.encodePacked("bytes32 Sign to
release a swap on Meson", "bytes21 Recipient (tron address in hex format)"));
...
mstore(0, MAINNET_TYPEHASH)

Figure C.4: The code in figure C.3, with a compile time–computed hash instead of a constant

● Unused constant value. The codebase contains an unused constant representing
the ABI selector for the ERC20 transfer function. A duplicate hexadecimal constant
is used instead.

bytes4 private constant ERC20_TRANSFER_SELECTOR =
bytes4(keccak256(bytes("transfer(address,uint256)")));

Figure C.5: contracts/utils/MesonHelpers.sol#10

bytes4(0xa9059cbb), // bytes4(keccak256(bytes("transfer(address,uint256)")))

Figure C.6: contracts/utils/MesonHelpers.sol#37

● Comments that confuse the LP fee with the service fee. The two comments
shown in figures C.7 and C.8 refer to the “service fee,” while the code actually deals

Trail of Bits 46 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/utils/MesonHelpers.sol#L229-L230
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/utils/MesonHelpers.sol#L304-L305
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/utils/MesonHelpers.sol#L10
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/utils/MesonHelpers.sol#L37

with the LP fee. The service fee is a separate fee that is deducted from the amount
of a swap elsewhere.

// Only (amount - service fee) is locked from the LP pool. The service fee will be
charged on release
_balanceOfPoolToken[poolTokenIndex] -= (_amountFrom(encodedSwap) -
_feeForLp(encodedSwap));

Figure C.7: contracts/Pools/MesonPools.sol#134–135

// (amount - service fee) will be returned because only that amount was locked
_balanceOfPoolToken[poolTokenIndex] += (_amountFrom(encodedSwap) -
_feeForLp(encodedSwap));

Figure C.8: contracts/Pools/MesonPools.sol#154–155

● Use of hard-coded values. In the code in figure C.9, the value 1e11 represents the
maximum swap amount, which is 100,000, with 8 decimals. In the code in figure
C.10, the value 1000 is used to represent 0.1%. Using a named constant in both of
these instances would increase the code’s readability and be considered best
practice.

require(amount <= 1e11, "For security reason, amount cannot be greater than 100k");

Figure C.9: contracts/Swap/MesonSwap.sol#54

function _serviceFee(uint256 encodedSwap) internal pure returns (uint256) {
return _amountFrom(encodedSwap) / 1000; // Default to `serviceFee` = 0.1% *

`amount`
}

Figure C.10: contracts/utils/MesonHelpers.sol#85–87

Trail of Bits 47 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Pools/MesonPools.sol#L134-L135
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Pools/MesonPools.sol#L154-L155
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/Swap/MesonSwap.sol#L54
https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/utils/MesonHelpers.sol#L85-L87

D. Upgradeability Recommendations

This appendix provides recommendations on upgrading the contracts through migrations
and designing the contracts to be upgraded without using the potentially risky
delegatecall proxy pattern.

Upgradeability with Migration
In essence, the contract migration process consists of two steps: recovering data from the
old contract and writing the data to the new contract.

Consider the following questions before implementing this approach:

● Which contracts contain a state that will need to be migrated when a new
version of the contract must be deployed? When a new version of the Meson
contract is deployed, the mappings in MesonStates will need to be migrated to
preserve pool balance and ownership information. In addition, the Meson contract’s
ERC20 token balances will need to be preserved or migrated with each update.

● Which features / contracts will need to be paused during the migration of a
contract? When a contract is being migrated, the system will need to be paused so
that data can be cleanly extracted and then written back into a new storage
contract.

● How will the different types of data be extracted from the contracts? Which
types of data can be retrieved through public getters, which need to be recovered
through events, which need to be recovered from dynamic arrays or mappings, and
which need to be recovered from private variables? Each of these warrants a
different way of extracting the data.

● How will the team ensure that all data is read out of each storage contract?
Document the steps involved in recovering all of the data from each contract, and
write tests to ensure that all data is successfully extracted.

● How will each type of data be written into the new contract? Create a process
for writing data into the new contract and write related tests.

● How much will a migration cost? Because each transaction carries a gas cost and
there is a block gas limit, the migration of a contract may be a costly procedure that
spans multiple transactions / blocks. Calculating the cost of migrating the contracts
(with their varying amounts of storage data) up front will enable the team to choose
the most efficient plan when the need to migrate a contract arises. These
calculations will also provide an estimate of the number of transactions / blocks that
a migration will require.

Trail of Bits 48 Meson Protocol Security Assessment
PUBLIC

● In what state will the new contract be deployed? Consider setting the contract’s
initial state to paused so that data can be written into it; the contract can then be
unpaused.

● Which references will need to be updated when the contracts are migrated to
a new version? When checking the functioning of the system after data is written
into a new contract, also check whether all required references have been updated.

● How will the migration of each contract affect external contracts that interact
with the Meson protocol? Communicating with external systems that interact with
the Meson contracts could improve the user experience.

References
● How contract migration works

Upgradeability with Data Separation
It is possible to design a contract such that it can be upgraded without using the
delegatecall proxy pattern. The core idea is to develop separate logic and storage
contracts. Additionally, if an entry point contract is implemented, an upgrade to the logic or
storage contract will not change the address of the contract; thus, external contracts that
interact with the system will not need to change the address that they point to.

Consider the following questions before implementing this approach:

● How will the access controls be designed? Who will be allowed to upgrade the
contracts? Will the pause functionality of the system be implemented in the entry
point contract or the logic contract, and who will be able to pause / unpause the
contract?

● Which transaction-related variables will need to be adjusted to implement this
approach? For example, in a contract that does not use the delegatecall proxy
pattern, the original msg.sender is not propagated; if the target function requires
the value, msg.sender will need to be passed to that function explicitly in a function
argument. Similarly, the ether sent in the call will need to be passed explicitly to the
next contract’s function call, as it will not be automatically propagated like it would
be through a delegatecall.

● Will there be one storage contract for the entire system, or one storage
contract per contract? Using one contract would simplify the system’s storage.
However, migrating the data of a single contract would require migrating all of the
contracts’ data from the old storage contract to the new storage contract.

● How will the team separate the logic to minimize the amount of logic that
needs to be updated? If the business logic is separated from the arithmetic,

Trail of Bits 49 Meson Protocol Security Assessment
PUBLIC

https://blog.trailofbits.com/2018/10/29/how-contract-migration-works/

upgrading either aspect of the system will require updating only the relevant
contract. Functionality that is shared by multiple contracts can be put in a single
contract referenced by those other contracts.

● How will contract upgrades be tested? Writing tests for upgrades of the logic and
/ or the storage of each contract will help the team uncover unforeseen problems.

● How will data be stored in the storage contract(s)? The method of storage could
be low level (e.g., storeUint256()) or more high level, like, for example,
storeVestingSchedule().

● Is the migration process designed to efficiently read out all data from the
storage contract(s) and write it back? Designing the storage contract layout in a
way that facilitates the process of reading out and writing back all of the data could
make the migration process much easier and cheaper.

References
● Designing the Gemini dollar, a regulated, upgradeable, transparent stablecoin

Trail of Bits 50 Meson Protocol Security Assessment
PUBLIC

https://www.youtube.com/watch?v=sPUBUcjdEzk

E. Incident Response Plan Recommendations

This section provides recommendations on formulating an incident response plan.

● Identify the parties (either specific people or roles) responsible for
implementing the mitigations when an issue occurs (e.g., deploying smart
contracts, pausing contracts, upgrading the front end, etc.).

● Document internal processes for addressing situations in which a deployed
remedy does not work or introduces a new bug.

○ Consider documenting a plan of action for handling failed remediations.

● Clearly describe the intended contract deployment process.

● Outline the circumstances under which Meson will compensate users affected
by an issue (if any).

○ Issues that warrant compensation could include an individual or aggregate
loss or a loss resulting from user error, a contract flaw, or a third-party
contract flaw.

● Document how the team plans to stay up to date on new issues that could
affect the system; awareness of such issues will inform future development
work and help the team secure the deployment toolchain and the external
on-chain and off-chain services that the system relies on.

○ Identify sources of vulnerability news for each language and component used
in the system, and subscribe to updates from each source. Consider creating
a private Discord channel in which a bot will post the latest vulnerability
news; this will provide the team with a way to track all updates in one place.
Lastly, consider assigning certain team members to track news about
vulnerabilities in specific components of the system.

● Determine when the team will seek assistance from external parties (e.g.,
auditors, affected users, other protocol developers, etc.) and how it will
onboard them.

○ Effective remediation of certain issues may require collaboration with
external parties.

● Define contract behavior that would be considered abnormal by off-chain
monitoring solutions.

Trail of Bits 51 Meson Protocol Security Assessment
PUBLIC

It is best practice to perform periodic dry runs of scenarios outlined in the incident
response plan to find omissions and opportunities for improvement and to develop
“muscle memory.” Additionally, document the frequency with which the team should
perform dry runs of various scenarios, and perform dry runs of more likely scenarios more
regularly. Create a template to be filled out with descriptions of any necessary
improvements after each dry run.

Trail of Bits 52 Meson Protocol Security Assessment
PUBLIC

F. Echidna Integration

During the audit, we integrated Echidna into the codebase to implement various invariant
checks. This practice allowed us to identify system properties and implement a fuzz test
that automatically generates random inputs to call smart contract functions.

The code in figure F.1 can be added to the contracts/ folder in a file named
Echidna.sol. After yarn build has been used to compile the fuzz test, it can be
executed via the following command:

$ echidna-test contracts/Echidna.sol –test-mode assertion

// SPDX-License-Identifier: MIT
pragma solidity =0.8.6;

import "./utils/MesonHelpers.sol";

contract Echidna is MesonHelpers {

function encodeSwap(
uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,
uint8 outToken,
bytes2 inChain,
uint8 inToken

) public pure returns (bytes memory) {
return
abi.encodePacked(
amount,
salt,
fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);
}

function postedSwap(address initiator, uint40 poolIndex) public pure returns(bytes
memory) {

return
abi.encodePacked(
initiator,
poolIndex

);
}

Trail of Bits 53 Meson Protocol Security Assessment
PUBLIC

function testAmountFrom(
uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,
uint8 outToken,
bytes2 inChain,
uint8 inToken

) external {
bytes memory encoded = encodeSwap(
amount,
salt,
fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);
assert(amount == _amountFrom(uint256(bytes32(encoded))));

}

function testSaltFrom(
uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,
uint8 outToken,
bytes2 inChain,
uint8 inToken

) external {
bytes memory encoded = encodeSwap(
amount,
salt,
fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);
assert(salt == _saltFrom(uint256(bytes32(encoded))));

}

function testFee(
uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,

Trail of Bits 54 Meson Protocol Security Assessment
PUBLIC

uint8 outToken,
bytes2 inChain,
uint8 inToken

) external {
bytes memory encoded = encodeSwap(
amount,
salt,
fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);
assert(fee == _feeForLp(uint256(bytes32(encoded))));

}

function testExpireTsFrom(
uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,
uint8 outToken,
bytes2 inChain,
uint8 inToken

) external {
bytes memory encoded = encodeSwap(
amount,
salt,
fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);
assert(expireTs == _expireTsFrom(uint256(bytes32(encoded))));

}

function testOutChainFrom(
uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,
uint8 outToken,
bytes2 inChain,
uint8 inToken

) external {
bytes memory encoded = encodeSwap(
amount,
salt,

Trail of Bits 55 Meson Protocol Security Assessment
PUBLIC

fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);
assert(outChain == bytes2(_outChainFrom(uint256(bytes32(encoded)))));

}

function testOutTokenIndexFrom(
uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,
uint8 outToken,
bytes2 inChain,
uint8 inToken

) external {
bytes memory encoded = encodeSwap(
amount,
salt,
fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);
assert(outToken == _outTokenIndexFrom(uint256(bytes32(encoded))));

}

function testInChainFrom(
uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,
uint8 outToken,
bytes2 inChain,
uint8 inToken

) external {
bytes memory encoded = encodeSwap(
amount,
salt,
fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);

Trail of Bits 56 Meson Protocol Security Assessment
PUBLIC

assert(inChain == bytes2(_inChainFrom(uint256(bytes32(encoded)))));
}

function testInTokenIndexFrom(
uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,
uint8 outToken,
bytes2 inChain,
uint8 inToken

) external {
bytes memory encoded = encodeSwap(
amount,
salt,
fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);
assert(inToken == _inTokenIndexFrom(uint256(bytes32(encoded))));

}

function testDecodeUntilFromLockedSwaps(uint80 until, uint40 poolIndex) external {
require(until != 0);
require(poolIndex != 0);
uint80 lockedSwap = _lockedSwapFrom(until, poolIndex);
assert(uint40(until) == uint40(_untilFromLocked(lockedSwap)));

}

function testDecodePoolIndexFromLockedSwaps(uint256 until, uint40 poolIndex)
external {

require(until != 0);
require(poolIndex != 0);
uint80 lockedSwap = _lockedSwapFrom(until, poolIndex);
assert(poolIndex == _poolIndexFromLocked(lockedSwap));

}

function testDecodeTokenIndex(uint8 tokenIndex, uint40 poolIndex) external {
require(tokenIndex != 0);
require(poolIndex != 0);
bytes6 poolTokenIndex = bytes6(_poolTokenIndexFrom(tokenIndex, poolIndex));
assert(tokenIndex == _tokenIndexFrom(uint48(poolTokenIndex)));

}

function testDecodePoolIndex(uint8 tokenIndex, uint40 poolIndex) external {
require(tokenIndex != 0);
require(poolIndex != 0);
bytes6 poolTokenIndex = bytes6(_poolTokenIndexFrom(tokenIndex, poolIndex));
assert(poolIndex == _poolIndexFrom(uint48(poolTokenIndex)));

Trail of Bits 57 Meson Protocol Security Assessment
PUBLIC

}

function testPostedSwapInitiator(address initiator, uint40 tokenIndex) external {
require(initiator != address(0));
require(tokenIndex != 0);
uint256 _postedSwap = uint256(bytes32(postedSwap(initiator, tokenIndex))) >> 56;
assert(_initiatorFromPosted(uint200(_postedSwap)) == initiator);

}

function testPostedSwapPoolIndex(address initiator, uint40 poolIndex) external {
require(initiator != address(0));
require(poolIndex != 0);
uint256 _postedSwap = uint256(bytes32(postedSwap(initiator, poolIndex))) >> 56;
assert(_poolIndexFromPosted(uint200(_postedSwap)) == poolIndex);

}

function testPoolTokenIndexForOutToken_ExtractOutToken(uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,
uint8 outToken,
bytes2 inChain,
uint8 inToken,
uint40 poolIndex

) external {
bytes memory encoded = encodeSwap(
amount,
salt,
fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);
require(poolIndex > 0);

uint256 _encodedSwap = uint256(bytes32(encoded));
uint48 poolTokenIndex = _poolTokenIndexForOutToken(_encodedSwap, poolIndex);
assert(uint8(poolTokenIndex >> 40) == outToken);

}

function testPoolTokenIndexForOutToken_ExtractPoolIndex(uint48 amount,
uint80 salt,
uint40 fee,
uint40 expireTs,
bytes2 outChain,
uint8 outToken,
bytes2 inChain,
uint8 inToken,
uint40 poolIndex

) external {

Trail of Bits 58 Meson Protocol Security Assessment
PUBLIC

bytes memory encoded = encodeSwap(
amount,
salt,
fee,
expireTs,
outChain,
outToken,
inChain,
inToken

);
require(poolIndex > 0);

uint256 _encodedSwap = uint256(bytes32(encoded));
uint48 poolTokenIndex = _poolTokenIndexForOutToken(_encodedSwap, poolIndex);
assert(uint40(poolTokenIndex) == poolIndex);

}

}

Figure F.1: An Echidna test for the MesonHelpers.sol contract

Trail of Bits 59 Meson Protocol Security Assessment
PUBLIC

https://github.com/MesonFi/meson-contracts-solidity/blob/d89ccc23d3c28d12d7110578d08903864b75b434/contracts/utils/MesonHelpers.sol#L10

G. Security Best Practices for the Use of a
Multisignature Wallet

Consensus requirements for sensitive actions such as spending the funds in a wallet are
meant to mitigate the risk of

● any one person’s judgment overruling the others’,

● any one person’s mistake causing a failure, and

● the compromise of any one person’s credentials causing a failure.

In a 2-of-3 multisignature Ethereum wallet, for example, the execution of a “spend”
transaction requires the consensus of two individuals in possession of two of the wallet’s
three private keys. For this model to be useful, it must fulfill the following requirements:

1. The private keys must be stored or held separately, and access to each one must be
limited to a different individual.

2. If the keys are physically held by third-party custodians (e.g., a bank), multiple keys
should not be stored with the same custodian. (Doing so would violate requirement
#1.)

3. The person asked to provide the second and final signature on a transaction (i.e.,
the co-signer) ought to refer to a pre-established policy specifying the conditions for
approving the transaction by signing it with his or her key.

4. The co-signer also ought to verify that the half-signed transaction was generated
willfully by the intended holder of the first signature’s key.

Requirement #3 prevents the co-signer from becoming merely a “deputy” acting on behalf
of the first signer (forfeiting the decision-making responsibility to the first signer and
defeating the security model). If the co-signer can refuse to approve the transaction for any
reason, the due-diligence conditions for approval may be unclear. That is why a policy for
validating transactions is needed. A verification policy could include the following:

● A protocol for handling a request to co-sign a transaction (e.g., a half-signed
transaction will be accepted only via an approved channel)

● A whitelist of specific Ethereum addresses allowed to be the payee of a transaction

● A limit on the amount of funds spent in a single transaction, or in a single day

Trail of Bits 60 Meson Protocol Security Assessment
PUBLIC

Requirement #4 mitigates the risks associated with a single stolen key. For example, say
that an attacker somehow acquired the unlocked Ledger Nano S of one of the signatories.
A voice call from the co-signer to the initiating signatory to confirm the transaction would
reveal that the key had been stolen and that the transaction should not be co-signed. If the
signatory were under an active threat of violence, he or she could use a “duress code” (a
code word, a phrase, or another signal agreed upon in advance) to covertly alert the others
that the transaction had not been initiated willfully, without alerting the attacker.

Trail of Bits 61 Meson Protocol Security Assessment
PUBLIC

https://en.wikipedia.org/wiki/Duress_code

